|         |         | 
If  is any point inside a Triangle
 is any point inside a Triangle  , and
, and  ,
,  , and
, and  are the feet of the perpendiculars from
 are the feet of the perpendiculars from
 upon the respective sides
 upon the respective sides  ,
,  , and
, and  , then
, then
 
 
References
Bankoff, L.  ``An Elementary Proof of the Erdös-Mordell Theorem.''  Amer. Math. Monthly 65, 521, 1958.
 
Brabant, H.  ``The Erdös-Mordell Inequality Again.''  Nieuw Tijdschr. Wisk. 46, 87, 1958/1959.
 
Casey, J.  A Sequel to the First Six Books of the Elements of Euclid, 6th ed.  Dublin: Hodges, Figgis, & Co., p. 253, 1892.
 
Coxeter, H. S. M.  Introduction to Geometry, 2nd ed.  New York: Wiley, p. 9, 1969.
 
Erdös, P.  ``Problem 3740.''   Amer. Math. Monthly 42, 396, 1935.
 
Fejes-Tóth, L.  Lagerungen in der Ebene auf der Kugel und im Raum.  Berlin: Springer, 1953.
 
Mordell, L. J.  ``On Geometric Problems of Erdös and Oppenheim.''  Math. Gaz. 46, 213-215, 1962.
 
Mordell, L. J. and Barrow, D. F.  ``Solution to Problem 3740.''  Amer. Math. Monthly 44, 252-254, 1937.
 
Oppenheim, A.  ``The Erdös Inequality and Other Inequalities for a Triangle.''  Amer. Math. Monthly 68, 226-230 and 349, 1961.
 
Veldkamp, G. R.  ``The Erdös-Mordell Inequality.''  Nieuw Tijdschr. Wisk. 45, 193-196, 1957/1958.