|         |         | 
The four parameters  ,
,  ,
,  , and
, and  describing a finite rotation about an arbitrary axis.  The
Euler parameters are defined by
 describing a finite rotation about an arbitrary axis.  The
Euler parameters are defined by
|  |  |  | (1) | 
|  |  | ![$\displaystyle \left[\begin{array}{c}e_1\\  e_2\\  e_3\end{array}\right] = \hat {\bf n} \sin\left({\phi\over 2}\right),$](e_2314.gif) | (2) | 
|  | (3) | 
Because Euler's Rotation Theorem states that an arbitrary rotation may be described by only three parameters, a
relationship must exist between these four quantities
|  | (4) | 
|  | (5) | 
|  | (6) | 
The Euler parameters may be given in terms of the Euler Angles by
|  |  | ![$\displaystyle \cos[{\textstyle{1\over 2}}(\phi+\psi)]\cos({\textstyle{1\over 2}}\theta)$](e_2319.gif) | (7) | 
|  |  | ![$\displaystyle \sin[{\textstyle{1\over 2}}(\phi-\psi)]\sin({\textstyle{1\over 2}}\theta)$](e_2321.gif) | (8) | 
|  |  | ![$\displaystyle \cos[{\textstyle{1\over 2}}(\phi-\psi)]\sin({\textstyle{1\over 2}}\theta)$](e_2323.gif) | (9) | 
|  |  | ![$\displaystyle \sin[{\textstyle{1\over 2}}(\phi+\psi)]\cos({\textstyle{1\over 2}}\theta)$](e_2325.gif) | (10) | 
Using the Euler parameters, the Rotation Formula becomes
|  | (11) | 
| ![\begin{displaymath}
\left[{\matrix{x'\cr y'\cr z'\cr}}\right] = {\hbox{\sf A}}\left[{\matrix{x\cr y\cr z\cr}}\right],
\end{displaymath}](e_2327.gif) | (12) | 
|  | (13) | 
 is the Kronecker Delta, and
 is the Kronecker Delta, and 
 is the
Permutation Symbol.  Written out explicitly, the matrix elements are
 is the
Permutation Symbol.  Written out explicitly, the matrix elements are
|  |  |  | (14) | 
|  |  |  | (15) | 
|  |  |  | (16) | 
|  |  |  | (17) | 
|  |  |  | (18) | 
|  |  |  | (19) | 
|  |  |  | (20) | 
|  |  |  | (21) | 
|  |  |  | (22) | 
See also Euler Angles, Quaternion, Rotation Matrix
References
Arfken, G.  Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 198-200, 1985.
 
Goldstein, H.  Classical Mechanics, 2nd ed.  Reading, MA: Addison-Wesley, 1980.
 
Landau, L. D. and Lifschitz, E. M.  Mechanics, 3rd ed.  Oxford, England: Pergamon Press, 1976.
 
|         |         | 
© 1996-9 Eric W. Weisstein