|         |         | 
Let  be a path in
 be a path in  ,
,  , and
, and  and
 and  be the tangents to the curves
 be the tangents to the curves  and
 and
 at
 at  and
 and  .  If there is an
.  If there is an  such that
 such that
|  |  |  | (1) | 
|  |  |  | (2) | 
 (or, equivalently, if
 (or, equivalently, if  has a zero of order
 has a zero of order  ), then
), then
|  | (3) | 
| ![\begin{displaymath}
f(z)-f(z_0) = (z-z_0)^N\left[{{f(N)(z_0)\over N!} + {f^{(N+1)}(z_0)\over (N+1)!} (z-z_0)+ \ldots}\right],
\end{displaymath}](n_727.gif) | (4) | 
| ![\begin{displaymath}
\arg[f(z)-f(z_0)] = N \arg(z-z_0) +\arg\left[{{ f(N)(z_0)\over N!}+{ f^{(N+1)}(z_0)\over (N+1)!}(z-z_0)+\ldots}\right].
\end{displaymath}](n_728.gif) | (5) | 
 ,
, 
 and
 and 
![$\vert\arg[f(z)-f(z_0)]\vert \to \phi$](n_731.gif) ,
,
| ![\begin{displaymath}
\phi = N\theta + \arg \left[{ f(N)(z_0)\over N!}\right]= N\theta +\arg[f(N)(z_0)].
\end{displaymath}](n_732.gif) | (6) | 
See also Conformal Transformation