|         |         | 
 
Also known as the Tree-Planting Problem.  Plant  trees so that there will be
 trees so that there will be  straight rows with
 straight rows with  trees
in each row.  The following table gives max(
 trees
in each row.  The following table gives max( ) for various
) for various  .
.   is Sloane's A003035 and
 is Sloane's A003035 and  is Sloane's A006065.
 is Sloane's A006065.
|  |  |  |  | 
| 3 | 1 | -- | -- | 
| 4 | 1 | 1 | -- | 
| 5 | 2 | 1 | 1 | 
| 6 | 4 | 1 | 1 | 
| 7 | 6 | 2 | 1 | 
| 8 | 7 | 2 | 1 | 
| 9 | 10 | 3 | 2 | 
| 10 | 12 | 5 | 2 | 
| 11 | 16 | 6 | 2 | 
| 12 | 19 | 7 | 3 | 
| 13 | ![$[22, 24]$](o_463.gif) |  | 3 | 
| 14 | ![$[26, 27]$](o_465.gif) |  | 4 | 
| 15 | ![$[31, 32]$](o_467.gif) |  |  | 
| 16 | 37 |  |  | 
| 17 | ![$[40, 42]$](o_471.gif) |  |  | 
| 18 | ![$[46, 48]$](o_473.gif) |  |  | 
| 19 | ![$[52, 54]$](o_475.gif) |  |  | 
| 20 | ![$[57, 60]$](o_477.gif) |  |  | 
| 21 | ![$[64, 67]$](o_480.gif) | ||
| 22 | ![$[70, 73]$](o_481.gif) | ||
| 23 | ![$[77, 81]$](o_482.gif) | ||
| 24 | ![$[85, 88]$](o_483.gif) | ||
| 25 | ![$[92, 96]$](o_484.gif) | 
Sylvester showed that
 
 is the Floor Function (Ball and Coxeter 1987).  Burr, Grünbaum and Sloane (1974) have shown
using cubic curves that
 is the Floor Function (Ball and Coxeter 1987).  Burr, Grünbaum and Sloane (1974) have shown
using cubic curves that
 
 , 11, 16, and 19, and conjecture that the inequality is
an equality with the exception of the preceding cases.  For
, 11, 16, and 19, and conjecture that the inequality is
an equality with the exception of the preceding cases.  For  ,
,
![\begin{displaymath}
r(k=3)\geq \left\lfloor{{\textstyle{1\over 3}}[{\textstyle{1...
...\lceil{{\textstyle{3\over 7}} n}\right\rceil ]}\right\rfloor ,
\end{displaymath}](o_490.gif) 
 is the Ceiling Function.
 is the Ceiling Function.
See also Orchard Visibility Problem
References
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed.  New York:
  Dover, pp. 104-105 and 129, 1987.
 
Burr, S. A. ``Planting Trees.''  In The Mathematical Gardner (Ed. David Klarner).  Boston, MA: Prindle, Weber,
  and Schmidt, pp. 90-99, 1981.
 
Dudeney, H. E.  Problem 435 in 536 Puzzles & Curious Problems.  New York: Scribner, 1967.
 
Dudeney, H. E.  The Canterbury Puzzles and Other Curious Problems, 7th ed.
  London: Thomas Nelson and Sons, p. 175, 1949.
 
Dudeney, H. E.  §213 in Amusements in Mathematics.  New York: Dover, 1970.
 
Gardner, M.  Ch. 2 in Mathematical Carnival: A New Round-Up of Tantalizers and Puzzles from Scientific American.
  New York: Vintage Books, 1977.
 
Gardner, M.  ``Tree-Plant Problems.''  Ch. 22 in Time Travel and Other Mathematical Bewilderments. 
  New York: W. H. Freeman, pp. 277-290, 1988.
 
Grünbaum, B.  ``New Views on Some Old Questions of Combinatorial Geometry.''  Teorie Combin. 1, 451-468, 1976.
 
Grünbaum, B. and Sloane, N. J. A.  ``The Orchard Problem.''  Geom. Dedic. 2, 397-424, 1974.
 
Jackson, J.  Rational Amusements for Winter Evenings.  London, 1821.
 
Macmillan, R. H.  ``An Old Problem.''  Math. Gaz. 30, 109, 1946.
 
Sloane, N. J. A.  Sequences
A006065/M0290
and A003035/M0982
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and extended entry in Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
|         |         | 
© 1996-9 Eric W. Weisstein