|         |         | 
 
A Rational Double Point of Conic Double Point type, known as `` .''  An ordinary Double Point
is called a Node.  The above plot shows the curve
.''  An ordinary Double Point
is called a Node.  The above plot shows the curve  , which has an
ordinary double point at the Origin.
, which has an
ordinary double point at the Origin.
A surface in complex 3-space admits at most finitely many ordinary double points.  The maximum possible number of
ordinary double points  for a surface of degree
 for a surface of degree  , 2, ..., are 0, 1, 4, 16, 31, 65,
, 2, ..., are 0, 1, 4, 16, 31, 65, 
 ,
, 
 ,
, 
 ,
, 
 ,
, 
 ,
,
 ... (Sloane's A046001; Chmutov 1992, Endraß 1995).  The fact that
 ... (Sloane's A046001; Chmutov 1992, Endraß 1995).  The fact that  was proved by 
Beauville (1980), and
 was proved by 
Beauville (1980), and  was proved by Jaffe and Ruberman (1994).  For
 was proved by Jaffe and Ruberman (1994).  For  , the following inequality
holds:
, the following inequality
holds:
![\begin{displaymath}
\mu(d)\leq {\textstyle{1\over 2}}[d(d-1)-3]
\end{displaymath}](o_845.gif) 
|  |  | Surface | 
| 3 | 4 | Cayley Cubic | 
| 4 | 16 | Kummer Surface | 
| 5 | 31 | Dervish | 
| 6 | 65 | Barth Sextic | 
| 8 | 168 | Endraß Octic | 
| 10 | 345 | Barth Decic | 
See also Algebraic Surface, Barth Decic, Barth Sextic, Cayley Cubic, Cusp, Dervish, Endraß Octic, Kummer Surface, Rational Double Point
References
Basset, A. B.  ``The Maximum Number of Double Points on a Surface.''  Nature 73, 246, 1906.
 
Beauville, A.  ``Sur le nombre maximum de points doubles d'une surface dans  
Chmutov, S. V.  ``Examples of Projective Surfaces with Many Singularities.''  J. Algebraic Geom. 1, 191-196, 1992.
 
Endraß, S.  ``Surfaces with Many Ordinary Nodes.''
http://www.mathematik.uni-mainz.de/AlgebraischeGeometrie/docs/Eflaechen.shtml.
 
Endraß, S.  ``Flächen mit vielen Doppelpunkten.''  DMV-Mitteilungen 4, 17-20, Apr. 1995.
 
Endraß, S.  Symmetrische Fläche mit vielen gewöhnlichen Doppelpunkten.  Ph.D. thesis.  Erlangen, Germany, 1996.
 
Fischer, G. (Ed.).  Mathematical Models from the Collections of Universities and Museums.
  Braunschweig, Germany: Vieweg, pp. 12-13, 1986.
 
Jaffe, D. B. and Ruberman, D.  ``A Sextic Surface Cannot have 66 Nodes.''  J. Algebraic Geom. 6, 151-168, 1997.
 
Miyaoka, Y.  ``The Maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants.''  Math. Ann. 268,
  159-171, 1984.
 
Sloane, N. J. A.  Sequence 
A046001
in ``The On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
 
Togliatti, E. G.  ``Sulle superficie algebriche col massimo numero di punti doppi.''
  Rend. Sem. Mat. Torino 9, 47-59, 1950.
 
Varchenko, A. N.  ``On the Semicontinuity of Spectrum and an Upper Bound for the Number of Singular Points on a Projective Hypersurface.''
  Dokl. Acad. Nauk SSSR 270, 1309-1312, 1983.
 
Walker, R. J.  Algebraic Curves.  New York: Springer-Verlag, pp. 56-57, 1978.
 
 (
 ( ).''
  Journées de géométrie algébrique d'Angers (1979).  Sijthoff & Noordhoff, pp. 207-215, 1980.
).''
  Journées de géométrie algébrique d'Angers (1979).  Sijthoff & Noordhoff, pp. 207-215, 1980.
|         |         | 
© 1996-9 Eric W. Weisstein