The  -transform of
-transform of  is defined by
 is defined by
| ![\begin{displaymath}
Z[F(t)]={\mathcal L}[F^*(t)],
\end{displaymath}](z_29.gif) | (1) | 
 
where
|  | (2) | 
 
 is the Delta Function,
 is the Delta Function,
 is the sampling period, and
 is the sampling period, and  is the Laplace Transform.  An alternative definition is
 is the Laplace Transform.  An alternative definition is
| ![\begin{displaymath}
Z[F(t)]=\sum_{\rm residues} \left({1\over 1-e^{Tz}z^{-1}}\right)f(z),
\end{displaymath}](z_34.gif) | (3) | 
 
where
|  | (4) | 
 
The inverse  -transform is
-transform is
| ![\begin{displaymath}
Z^{-1}[f(z)]=F^*(t)={1\over 2\pi i}\oint f(z)z^{n-1}\,dz.
\end{displaymath}](z_36.gif) | (5) | 
 
It satisfies
| ![$\displaystyle Z[aF(t)+bG(t)]$](z_37.gif) |  | ![$\displaystyle a Z[F(t)]+b Z[F(t)]$](z_39.gif) | (6) | 
| ![$\displaystyle Z[F(t+T)]$](z_40.gif) |  | ![$\displaystyle z Z[F(t)]-zF(0)$](z_41.gif) | (7) | 
| ![$\displaystyle Z[F(t+2T)]$](z_42.gif) |  | ![$\displaystyle z^2 Z[F(t)]-z^2 F(0)-z F(t)$](z_43.gif) | (8) | 
| ![$\displaystyle Z[F(t+mT)]$](z_44.gif) |  | ![$\displaystyle z^m Z[F(t)]-\sum_{r=0}^{m-1} z^{m-r}F(rt)$](z_45.gif) | (9) | 
| ![$\displaystyle Z[F(t-mT)]$](z_46.gif) |  | ![$\displaystyle z^{-m}Z[F(t)]$](z_47.gif) | (10) | 
| ![$\displaystyle Z[e^{at}F(t)]$](z_48.gif) |  | ![$\displaystyle Z[e^{-aT}z]$](z_49.gif) | (11) | 
| ![$\displaystyle Z[e^{-at}F(t)]$](z_50.gif) |  | ![$\displaystyle Z[e^{aT}z]$](z_51.gif) | (12) | 
|  |  | ![$\displaystyle -Tz{d\over dz} Z[F(t)]$](z_53.gif) | (13) | 
|  |  |  | (14) | 
 
Transforms of special functions (Beyer 1987, pp. 426-427) include
| ![$\displaystyle Z[\delta(t)]$](z_56.gif) |  |  | (15) | 
| ![$\displaystyle Z[\delta(t-mT)]$](z_58.gif) |  |  | (16) | 
| ![$\displaystyle Z[H(t)]$](z_60.gif) |  |  | (17) | 
| ![$\displaystyle Z[H(t-mT)]$](z_62.gif) |  |  | (18) | 
| ![$\displaystyle Z[t]$](z_64.gif) |  |  | (19) | 
| ![$\displaystyle Z[t^2]$](z_66.gif) |  |  | (20) | 
| ![$\displaystyle Z[t^3]$](z_68.gif) |  |  | (21) | 
| ![$\displaystyle Z[a^{\omega t}]$](z_70.gif) |  |  | (22) | 
| ![$\displaystyle Z[\cos(\omega t)]$](z_72.gif) |  |  | (23) | 
| ![$\displaystyle Z[\sin(\omega t)]$](z_74.gif) |  | ![$\displaystyle {z[z-\cos(\omega T)]\over z^2-2z\cos(\omega T)+1},$](z_75.gif) | (24) | 
 
where  is the Heaviside Step Function.  In general,
 is the Heaviside Step Function.  In general,
where the 
 are Eulerian Numbers.  Amazingly, the 
Z-transforms of
 are Eulerian Numbers.  Amazingly, the 
Z-transforms of  are therefore generators for Euler's Triangle.
 are therefore generators for Euler's Triangle.
See also Euler's Triangle, Eulerian Number
References
Beyer, W. H. (Ed.).  CRC Standard Mathematical Tables, 28th ed.  Boca Raton, FL: CRC Press, pp. 424-428, 1987.
Bracewell, R.  The Fourier Transform and Its Applications.  New York: McGraw-Hill, pp. 257-262, 1965.
© 1996-9 Eric W. Weisstein 
1999-05-26