|         |         | 
An Algorithm which finds a Polynomial recurrence for terminating Hypergeometric Identities of the form
 
 is a Binomial Coefficient,
 is a Binomial Coefficient,  ,
,  ,
,  ,
,  ,
,  ,
,  are constant
integers and
 are constant
integers and  ,
,  ,
,  ,
,  ,
,  ,
,  , and
, and  are complex numbers (Zeilberger 1990).  The method
was called Creative Telescoping by van der Poorten (1979), and led to the development of the amazing machinery of
Wilf-Zeilberger Pairs.
 are complex numbers (Zeilberger 1990).  The method
was called Creative Telescoping by van der Poorten (1979), and led to the development of the amazing machinery of
Wilf-Zeilberger Pairs.
See also Binomial Series, Gosper's Algorithm, Hypergeometric Identity, Sister Celine's Method, Wilf-Zeilberger Pair
References
Krattenthaler, C.  ``HYP and HYPQ: The Mathematica Package HYP.''
  http://radon.mat.univie.ac.at/People/kratt/hyp_hypq/hyp.html.
 
Paule, P. and Riese, A.  ``A Mathematica  
Paule, P. and Schorn, M.  ``A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities.''
  J. Symb. Comput. 20, 673-698, 1995.
 
Petkovsek, M.;  Wilf, H. S.; and Zeilberger, D.  ``Zeilberger's Algorithm.''  Ch. 6 in A=B.
  Wellesley, MA: A. K. Peters, pp. 101-119, 1996.
 
Riese, A.  ``A Generalization of Gosper's Algorithm to Bibasic Hypergeometric Summation.''  Electronic J. Combinatorics 1, R19 1-16, 1996.
http://www.combinatorics.org/Volume_1/volume1.html#R19.
 
van der Poorten, A.  ``A Proof that Euler Missed... Apéry's Proof of the Irrationality of  
Wegschaider, K.  Computer Generated Proofs of Binomial Multi-Sum Identities.   Diploma Thesis, RISC.  Linz, Austria: J. Kepler
  University, May 1997.
 
Zeilberger, D.  ``Doron Zeilberger's Maple Packages and Programs: EKHAD.''
  http://www.math.temple.edu/~zeilberg/programs.html.
 
Zeilberger, D.  ``A Fast Algorithm for Proving Terminating Hypergeometric Series Identities.''  Discrete Math. 80, 207-211, 1990.
 
Zeilberger, D.  ``A Holonomic Systems Approach to Special Function Identities.''  J. Comput. Appl. Math. 32, 321-368, 1990.
 
Zeilberger, D.  ``The Method of Creative Telescoping.''  J. Symb. Comput. 11, 195-204, 1991.
 
 -Analogue of Zeilberger's Algorithm Based on an
  Algebraically Motivated Approach to
-Analogue of Zeilberger's Algorithm Based on an
  Algebraically Motivated Approach to  -Hypergeometric Telescoping.''  In Special Functions,
-Hypergeometric Telescoping.''  In Special Functions,
   -Series and Related Topics, Fields Institute Communications 14, 179-210, 1997.
-Series and Related Topics, Fields Institute Communications 14, 179-210, 1997.
 .''
  Math. Intel. 1, 196-203, 1979.
.''
  Math. Intel. 1, 196-203, 1979.
|         |         | 
© 1996-9 Eric W. Weisstein